

Differential Amplifiers

Benefits of Differential Signal Processing

- The Benefits Become Apparent when Trying to get the Most Speed and/or Resolution out of a Design
 - Avoid Grounding/Return Noise Problems
 - Better Distortion/Dynamic Range
 - For the same Amplitude Differential Signal the Outputs do not Swing as Close to the Rail
 - Lower Distortion especially the 2nds
 - Analog Signals in High-performance Systems Start and End Differential
 - Almost Always the Signal Source from the Real World is Differential
 - High-speed ADCs Have Differential Inputs

Single-ended Components Cannot Reject Ground Noise

- Each Part of the Circuit Has a Different Reference Point
- No Matter How Careful you are with Grounding High Frequency Ground Currents will Cause Some Problems which May be Difficult to Work Around
- Op Amp Can not Reject This Ground Noise

Differential Amps Have Effective CMRR

- Differential Signal does not Need a Reference
- Ground and Other Noise Sources are Common to Both Inputs

CMRR of Differential Amp is Effective

Why Differential Signal Processing is not More Common

- Differential Signals are Commonly used Today for ADC and Line Driving
- Differential Signaling is not Generally Considered for Other Uses Because:
 - Discrete Differential Designs can Be Difficult to Implement
 - Some Applications can not Tolerate the Higher Cost
 - Not Many Differential ICs are Available
 - Transformers must be Used
- As Speeds and Resolution Increase the Benefits of Differential Signaling Become More Necessary

Differential Input/Output High-speed Amps AD8131/2/8

High Speed Differential Amps for Challenging Designs

- Differential Signal Processing Simplifies Circuit Design
 - Avoid Ground Noise
 - 2x Dynamic Range of Op Amps
 - Balanced Outputs Minimize EMI
 - □ High CMRR Reduces EMI Susceptibility

High Speed ADC Driving

- ADCs Perform Better when Driven Differentially
- Like a Voltage Feedback Op Amp:
 - **Gain Set by Ratio of R_F/R_G**
 - Signal Gain, Filtering, Level Shifting, Buffering / Driving

What's Inside the AD8131/2/8 Diff Amps?

Internal CM Feedback forces Forces both outputs to be balanced,

- □ Equal in amplitude 180° out of phase: $V_{OUT, CM} = (V_{OUT+} + V_{OUT-})/2)$
 - Balance is unaffected by R_F/R_G matching
- Differential feedback effectively creates 2 summing nodes
 - □ Forces Both Inputs to the same voltage when the loop is closed
 - □ High Input Z, Low Output Z

Understanding How They Work w/ Alternate Circuit Configurations

Like Non-inverting Op Amp

Like Inverting Op Amp

2 Feedback Loops

- Differential feedback forces inputs to the same voltage
- Common mode Feedback forces V_{OUT} = -V_{OUT}.
- Non-inverting example:

• For
$$R_F = 0$$

- Inverting example:
 - **□** For $R_F = R_G$
 - □ High input Z summing node

$$-V_{out-} = -V_{IN}$$
$$-Gain = 2$$

More About the $V_{\text{OCM}}\,\text{Pin}$

- V_{OCM} Pin separates our diff amps from other diff amp configurations
 - □ Creates Best Available Balance @ High Frequencies
 - Can be used with AC signal for Modulation as well as DC Reference Voltages
- Easy Level Shift
 - From Ground Referenced Signals (+/-5V supplies) to Single +5V Supply Signals for ADCs
 - □ Better Distortion in signal chain for +/-5V, than +5V
 - Connect to the ADC reference or any other reference voltage

AD8131/2/8 vs. Dual Op Amp Configurations

- Compared to Dual Op Amp Configuration for Differential Driving:
 - \square 2 Op Amps, G = +1 and G = -1
 - Output Dynamics are Different at High Frequencies
 Output balance; EMI emissions
 - No Easy Way to Change Common Mode Output Level
 - Distortion Products are Additive
 - AD8131/2/8 even harmonics are Nulled by the Common Mode Feedback and Odd Harmonics are low by design

AD8131/2/8 vs. Transformers

AD8131/2/8 are similar to Center-taped Transformers

- Differential or Single-ended In with Differential Out
- **CM** Output Adjustment
- **AD8131/2/8** :
 - Bandwidth to DC
 - Does not require I/O impedance matching
 - □ Can have signal power gain
 - Smaller in size
 - Lower cost than most transformers
 - Has higher reliability

Using the AD8138 in Active Filters

- Op amps have inverting and non-inverting inputs available.
- AD8138 inputs are both inverting
 - □ Filter topologies must be inverting types.

Filter Design

- Low-pass, High-pass and Band-pass Are Possible
 - Butterworth, Bessel and Chebyshev Filters can be Realized in MF filters
- MF filters are 2nd Order (conjugate pole pairs)
 - □ Higher order filters may be realized by stacking sections
 - Multiple Feedback Filter topologies provide a DC path for the input bias current.

Differential Filter Characterization

- Low Pass, High pass and band-pass active filters were designed, built and tested
 - As shown in the following slides, theoretical and actual results closely agree.
- AD8138 needs Small resistor values (10-47 Ohms) in series with the feedback circuitry to prevent oscillation at approximately 300 MHz.
- AD8132 does not Require a small resistor
- Feedback capacitance greater than a few pF may result in high frequency de-stabilization of the AD8132/8.

Ex.: 2 Pole Low Pass Schematic

2 Pole Low Pass Butterworth Anti-aliasing Filter, fc = 5 MHz

Differential Input to Single-ended Out Amps AD8129/30

AD8129/30 Receivers

- Active Feedback Topology, Like the AD830
 - High CMRR @ High Freq
 - High Input Impedance
 - CMRR Insensitive to Input Z
 - Feedback network Independent of signal path
- Use as:
 - Differential Receiver
 - + & Inputs have same Dynamic Response
 - Difference Amp
 - High Frequency InAmp

AD8129/30 vs. Op Amp Configurations

Compared to Single Op Amp Differential Amp Configuration for Receiver

Poor CMRR

- Unbalanced Input Impedances
- Requires resistor matching for good CMRR
- Compared to 3 Op Amp Receiver
 - Lots of parts and Design Time
 - **Extra Amps in Signal path lowers BW**

AD8129/30 vs. Transformers

AD8129/30 are similar to Transformers
 Differential In with Single-ended Out
 Output Reference Adjustment

AD8129/30 :

Bandwidth to DC

□ Can have signal power gain

□ Smaller in size

- Lower cost than most transformers
- Has higher reliability

For Use with High-speed Converters

ADCs Perform Better when Driven Differentially

Especially as Frequency Increases

AD8138 Driving an AD9224 12-bit 40 MSPS A/D on +5V Supply

- AD9224 Reference CML output drives V_{OCM} to set optimum CM output
 - Easy level shift using V_{OCM}
- The AD8138 provides low-distortion drive on +5V or +/-5V Supplies

3V Circuit: AD8132 Driving an AD9203 10-bit 40 MSPS A/D

- AD8132 Provides +/-1V output swing on 3V supply with low distortion for low cost ADCs
- V_{OCM} Level Shifts from Ground-referenced input

Resistor and capacitor between Amp and ADC needed to filter Switchedinput current glitches

The AD8138 is the World's Best **Amplifier for Driving High-speed ADCs**

• > -80dB SFDR using the AD8138 to drive the AD9226

SFDR over frequency

Diff amps to Help Reduce Clock Jitter

- Some ADCs have Differential Clock Inputs to Minimize Ground Noise Effects on Jitter
 - Ground Noise is only one source of jitter which decreases the performance of the fastest ADCs
- As Discussed before, With Differential Signals the Ground Noise becomes Common Mode
 - AD8131/2/8 can be used to send the clock signal from its source into the ADC
 - Isolating Analog and Digital Grounds
 - Minimizing Radiated EMI

Buffered Differential Out for 12-16 bit High-speed DACs

- "Virtual GND" Reduces Effect of DAC's Nonlinear Output Impedance
 - To Achieve Larger Output Power without having a large compliance voltage on the DAC Output

When Level Shifting is Needed use V_{OCM}

Differential to Singled-end Buffer for 12-16 bit High-speed DACs

- AD8129/30 can be used to Isolate the reactive load of the filter from the DAC output.
 - Filter cap may be needed to reduce excessive slewrate on the amp input to improve amp settling
- To Achieve Larger Output Power without having a large compliance voltage on the DAC Output

When Level Shifting is Needed use Ref input of the

For Driving and Receiving High-speed Signals

Differential Driver and Receiver

Balanced Driver Minimizes EMI Generation

High CMRR Receiver Minimizes EMI Pick-up

Cable Driving Challenge

Drive / Receive Requirements

Driver

- Balance needed to minimize radiated EMI
- Simple to use, no Z matching required
- High BW to transmit boosted signal

Receiver

- **CMRR** needed to reject CM Noise
- Feedback network independent of receive section
- □ High BW for equalization boost

Receive-Side Equalization

Drive Side High Frequency Boost

- Integrator on input adds zero to boost signal @ high frequency
- For Equalization when Driving Long Cables
 - □ Gain Limited by Output swing capability

AD8132 Makes Simple Very High Speed Full-wave Rectifier

Operates to greater than 300 MHz

ADI Multi-Purpose Differential Amp Family

Part #	AD8131	AD8138	AD8132	AD8129	AD8130
	Differential-to-Differential Driver			Differential-to-Single Ended Receiver	
Features	Fixed Gain=2x	Adjustabl Fee	e Gain / dback	10x stable	1x stable
Bandwidth	400MHz	310MHz	350MHz	200MHz	270MHz
Slew Rate	2000V/µs	1150V/μs	1200V/µs	1060V/μs	1090V/μs
Position	Line Driver	Best ADC Driver	Low Cost Gen Purp	Diff-to-S.E. converter	Diff-to-S.E. converter

High-Speed Amplifiers (HSA)

Fast FETs[™] The NEW Standard for JFET Amplifiers

- Very Easy to Use
- Negligible I_{bias} and I_{noise}
- R-R output
- Wide supply range
- Low Supply Current
- Low Price

Fast FETs[™] Low-Cost High-Speed AD8033/4

AD8033/4

- 75MHz Bandwidth
- □ 80V/µs Slew Rate
- 3.2mA/Amp Typical Supply Current
- Rail-to-Rail output
- Wide Supply Range 5-24V
- Very Low Pricing
 - \$1.19 @ 1K AD8033 (Single)
 - \$1.59 @ 1K AD8034 (Dual)
- Part Status
 - Final Silicon
 - Release Qtr
 - ⊲AD8033 (3Q02)
 - ∕⊠AD8034 (2Q02)

Fast FETs[™] High-Performance High-Speed AD8065/6

AD8065/66

- 140MHz Bandwidth
- □ 160V/µs Slew Rate
- □ 7 nV/vHz Noise
- □ 6.5mA/Amp Typical supply current
- □ Rail-to-Rail output
- Low offset voltage and drift
- □ Wide Supply Range 5-24V
- □ Price @ 1K
 - \$1.59 AD8065 (Single)
 - \$2.29 AD8066 (Dual)
- Part Status
 - Final Silicon
 - Release Qtr
 - ≪AD8065 (2Q02)
 - ≪AD8066 (3Q02)

Ultra Low-Distortion and Noise Amplifier AD8007/8

- Extremely Low SFDR
 - □ -96dB@5MHz
 - □ -86dB@20MHz
 - -55dB@70MHz
- Low Noise
 - □ 2.6 nV/vHz
 - \square 22 pA/vHz
- High Speed
 - 600MHz Bandwidth
 - □ 1000V/µs Slew Rate
- Low Power
 - 9mA/Amp Typical supply current
- Pricing @ 1k
 - □ \$1.19 AD8007
 - □ \$1.99 AD8008
- Part Status
 - Final Silicon
 - Release Qtr
 - AD8007 (3Q02)AD8008 (1Q03)

Low-Power High-Speed Amplifier AD8038/9

Low Power

- 1.1mA/Amp Typical supply current
- High Speed
 - 315MHz Bandwidth
 - □ 425V/µs Slew Rate
- Low Noise
 - □ 250pA/vHz
 - □ 7nV/vHz
- Low SFDR
 - -86dB @ 1MHz
 - -77dB @ 5MHz
- Price @ 1K
 - □ \$0.85 AD8038
 - □ \$1.20 AD8039
- Part Status
 - Final Silicon
 - Release Qtr
 - AD8038 (2Q02)
 - AD8039 (1Q02)

Summary of New Products

Generic	Description	Samples	Release
AD8033	Fast FETs [™] Low-Cost High-Speed (single)	1Q02	3Q02
AD8034	Fast FETs [™] Low-Cost High-Speed (dual)	Now	2Q02
AD8065	Fast FETs [™] High-Performance High-Speed (single)	Now	2Q02
AD8066	Fast FETs [™] High-Performance High-Speed (dual)	1Q02	3Q02
AD8007	Ultra Low-Distortion and Noise (single)	Now	3Q02
AD8008	Ultra Low-Distortion and Noise (dual)	1Q02	1Q03
AD8038	Low-Power High-Speed (single)	1Q02	2Q01
AD8039	Low-Power High-Speed (dual)	Now	1Q01

